Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Enhancing Tumor-Infiltrating T cells with an Exclusive Fuel Source

No data is associated with this publication.
Abstract

Solid tumors harbor immunosuppressive microenvironments that inhibit tumor-infiltrating lymphocytes (TILs) through the voracious consumption of glucose. We sought to restore TIL function by providing them with an exclusive fuel source. The glucose disaccharide cellobiose, which is a building block of cellulose, contains a β-1,4-glycosidic bond that cannot be hydrolyzed by animals (or their tumors), but fungal and bacterial organisms have evolved enzymes to catabolize cellobiose and use the resulting glucose. By equipping T cells with two proteins that enable import and hydrolysis of cellobiose, we demonstrate that supplementation of cellobiose during glucose withdrawal restores T cell cytokine production and cellular proliferation. Murine tumor growth is suppressed, and survival is prolonged. Offering exclusive access to a natural disaccharide is a new tool that augments cancer immunotherapies. Beyond cancer, this approach could be used to answer questions about the regulation of glucose metabolism across many cell types, biological processes, and diseases.

Main Content

This item is under embargo until January 19, 2025.