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Mathematical Modeling of Brain Tumor Growth

1 Introduction

1.1 Background

Glioblastoma Multiforme (GBM) is one of the fastest-growing and is the most common form of
brain tumors [13]. It has very aggressive and invasive properties which lead to a median survival
of two/three months, if no treatment is performed [4]. Currently, the standard of care for treat-
ing GBM is resection followed by radiation and chemotherapy [5]. However, depending on the
localization of the tumor, performing surgery might be impossible. Furthermore, surgery does not
guarantee complete removal of the tumor cells. With their very di↵usive behavior, the remaining
tumor cells regrow rapidly [4]. In addition, traditional oral drugs are ine↵ective as they target
tumor cells using bloodstream and GBM occur in the Central nervous system. Moreover, the blood
brain barrier represents a physical obstacle through which medication is unable to e↵ectively dif-
fuse through. Consequently, even with available treatments, the mean survival time is less than 15
months [10].

Nowadays, we have sophisticated imaging techniques such as Magnetic Resonance Imaging
(MRI) that allow doctors to accurately identify the location and characteristics of brain tumors
during preoperative examination as well as well post-treatment management. Basic MRI modali-
ties such as T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-
attenuated inversion recovery (T2-FLAIR) sequences, are usually performed at initial diagnosis
of GBMs. For instance, T1 MRI usually shows a necrotic region surrounded by an enhancing
rim that correlates with high blood vessel density; T2 MRI shows an outer rim corresponding to
peripheral/hyper-vascularized region. Hence, from an MRI analysis, it shows that the GBM mass
can be divided into three subregions: the inner core (necrotic core), the intermediate layer (en-
hancing rim), and the peripheral/hyper-vascularized region (edema).

Although we are able to capture the size of the tumor mass at a precise time with standard
imaging methods, it is impossible to monitor the entire growth process of GBM cells in a human
brain. Additionally, MRI has a limited ability to accurately characterize tumor masses anatomically.
Hence, despite being able to exactly pinpoint where the tumor is located, we cannot accurately
determine how high the tumor density is [6] . In that regard, di↵erent biological models such as
in vivo models have been explored to better understand the interaction of GBM cells and brain
environments. For instance, Rutter et al. investigated GBM cell evolution in a Murine environment
[12]. Although this approach gives us great insights on the proliferative/di↵usive characteristics of
gliomas, it does not necessarily translate to what would happen in a human brain since most mice
used in such experiments are immunocompromised. On top of that, these experiments come at the
detriment of the animal’s life.
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Thus, despite all the substantial advantages of imaging methods or biological experiments,
they are incapable of reliably predict tumor growth in a human brain. Therefore, leaning toward
mathematical models might provide better insights on the evolution of GBM cells in a human brain
in hopes of discovering e↵ective therapy.
The Kolmogorov–Petrovsky–Piskunov equation, commonly known as the Fisher’s equation, is a
type of reaction-di↵usion equations often used to describe the dynamics of population, in particular
to study invasive behavior of growing tumor cells:

@C

@t
(x, t) = r · (DrC(x, t))| {z }

di↵usion

+ ⇢C(x, t)(1 � C(x, t))| {z }
growth

8x 2 B (1)

where C indicates the normalized tumor cell density (0  C(x, t)  1). We denote B the brain
geometry. In this model, we capture the di↵usive characteristic of the GBM by the di↵usion pa-
rameter D (mm2day�1), and the proliferative behavior by the growth parameter ⇢ (day�1).

Tracqui et al. were the one of the first mathematicians to model GBM growth [15]. Based on
the analysis of serial CT scans taken from a single GBM cancer patient (treated with chemother-
apy) for one year, they attempted to estimate rates of net proliferation ⇢ and net di↵usion D[15].
Woodward et al. used these values as averages to model the e↵ect of resection on GBM evolution
from di↵erent hypothetical patients [16] and compared with real data obtained from Kreth et al.
[7, 14].
On the other hand, Swanson and her collaborators have sought to develop a patient specific math-
ematical model and to estimate patient specific parameter values of D and ⇢. Their data consisted
of successive Magnetic Resonance (MR) images taken from 70 adult patients with previously un-
treated glioblastoma and received X-irradiation as well as chemotherapy [14]. Therefore, the ability
to estimate these (ideally patient-specific) model parameters as accurately as possible can give a
better understanding of the GBM evolution and, thereby, benefit the optimization of therapy.

Yet, most data used in those works included treatment, and truly understanding the growth
of GBM in our brain is unfeasible with such data. Conversely, obtaining successive MR (at least
3 time points) images of patients with untreated glioblastoma is quasi-impossible because, due to
to the invasive properties of GBM, immediate care will be advised by experts to (try to) extend
survival [5]. Most data available are at most two snapshots, since experts usually take at most
two MR scans pre-treatment: one at the initial diagnosis, one right before treatment). Given the
limited accessibility to MRI scans at multiple time steps, we are unable to learn these parameters
for untreated patients using standard learning techniques such as optimization routines (best least-
squared fit).

Our goal is to develop a computational pipeline that will allow us to first estimate patient spe-
cific parameters from a single MRI snapshot, and then theorize a prognostic using our constructed
forward simulator. We aspire that this framework could be applied to help improve real prognostic,
and inform clinicians to select optimal treatments.

Our equation model (Equation 1) assumes homogeneity between all cells and leads to a dense
tumor mass with an advancing front [3]. It does not explicitly take in account the interaction of the
necrotic core, and the surrounding live cells that can contribute to the proliferation and migration

5



of the tumor cells. Additionally, some have found that the significance of accumulation of fluid
resulting from disruption of the blood-brain barrier (edema) might be a prognostic indicator of
patient survival [11].

1.2 Computational Pipeline

Figure 1: Computational Pipeline

We thereby constructed the following computational pipeline (Figure 1).
In step (1), we obtained MR images for a patient acquired at a single time point with the brain
geometry and the tumors segmented [8, 1, 2]. Then, in step (2), using a level set function, we
reconstruct the brain geometry. We proceed in this step to reconstruct the tumor geometry as well
as its location in the given brain. This reconstruction allows us to identify the three main regions
of the GBM: necrotic core, enhancing rim, and edema in step (3). Then (4), using the assumption
that all GBM mass are spherical, we calculate the radius of each of the regions. We proceed in step
(5) to construct a model that learn patient specific parameters necessary in Equation (1) using the
computed radii. Finally (6), we feed the learned parameters into our constructed forward simulator
and monitor the GBM growth over T = 60 days, which is the mean survival time for GBM cancer
without any treatment received [5].

In the next section, we illustrate how we reconstruct a realistic brain geometry from the ob-
tained medical data. In Section 3, we explain how retrieve the geometrical properties of the tumor
subregions from the reconstruction and describe the model to infer patient-specific parameters. In
Section 4, we delineate our constructed forward simulator and use the inferred model parameters
to simulate tumor growth. This is followed by the Results and Future Work Section.

2 From the Medical data to the reconstruction of a realistic brain
geometry

We obtained MR images of Brain scans of patients diagnosed with gliomas from the BRATS datasets
[8, 1, 2]. These images were taken at a single time point. Assuming all brains are similar to an
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extent, we subtract a threshold intensity from the raw data to remove any background noise. Then,
using a level set function, we reconstruct the whole brain geometry. The level-set approach favors
the construction of a non-pixelated brain geometry. The raw data are given in 2 dimension. We
can view the 3 dimensional reconstruction as the superposition of all 2 dimensional slices.
In this dataset, we also get segmented data of the brain tumor. The segmentation is done ac-
cordingly to heterogeneous histological sub-regions of gliomas, i.e., peritumoral edematous/invaded
tissue, necrotic core, active and non-enhancing core. Hence, we identify the di↵erent tumor regions
from the segmented data and we construct the corresponding level set representation to reconstruct
the tumor geometry as well as its location in the given brain. This reconstruction allows us to iden-
tify the three main regions of the GBM: necrotic core, enhancing rim, and edema. Below, we can
see how our reconstruction matches with the 2 dimensional segmented data (Figure 2, Figure 3),
as well as the whole brain and tumor reconstruction (Figure 4).

Figure 2: Real Brain MR image data (left) reconstructed Brain in 2D (right)

7



Figure 3: Real Brain/Tumor MR image data (left) reconstructed tumor in 2D (right)

Figure 4: Whole Brain with tumor Reconstruction

3 From the reconstruction of the tumor to the inference of the
patient-specific parameters

It has been recognized that GBMs morphologically typically appear (at least at initial diagnosis) as
roughly spherical. Consequently, we approximate each of the three regions (necrotic core, enhancing
rim, edema) of the tumor as a sphere. We hypothesize that tracking the radii over a given time will
yield insights into the relative contributions of cellular proliferation, motility, necrosis, and edema
to the observed image features, and thereby have a better understanding of GBM growth. Han et
al. estimated patient specific parameters from a single snapshot via traveling wave analysis, but a
reduced model of Equation (1) onto 1 dimension [3]. Additionally, their analysis was sensitive to
parameter values, sometimes providing imaginary numbers, reproducing their same results numer-
ically was quite arduous. Yet, this motivated us to explore possibilities to learn these parameters
using these radii obtain from a single snapshot.
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In Figure 5 and Figure 6, we can see that each subregion of the GBM can be approximated
spherically. Therefore, we calculate numerically the volume of each region. To do so, we assign
a density of 1 to all discritized cells and integrate it over the whole brain domain. We find each

radius using the volume of sphere formula (i.e. ri = 3

q
3
4⇡Vi).

Figure 5: Real Tumor (left) Spherical tumor (right)

Figure 6: Necrotic Core (left), Enhancing Rim (middle), Edema (right)

We find R0 = 12.90mm, R1 = 21.15mm, R2 = 28.35mm.

Table 1 represents the patient-specific parameters D and ⇢ obtained by Han et al. given a
patient’s tumor information (R0, R1, R2 in mm) [3]. We opted to first investigate a native model,
a linear regression model based on the results provided by Han et al. (see Table 1). Table 1 also
shows the predicted parameters D̂ and ⇢̂ from our constructed linear regression model.

Patient R0 R1 R2 D ⇢ D̂ ⇢̂

1 14.87 20.73 27.77 0.2852 0.2102 0.4332 0.2068
2 20.48 26.34 38.24 1.2791 0.2624 1.1835 0.2685
3 6.61 10.91 15.24 0.0825 0.1736 0.0319 0.1769
4 22.87 26.96 37.03 0.9825 0.2590 0.9295 0.2558
5 8.17 14.20 25.10 0.9769 0.2520 1.0170 0.2491
6 8.29 15.83 20.35 0.0687 0.1652 0.0177 0.1651

Table 1: Patient-specific parameters inferred from both Han’s and our model given R0, R1, and
R2 (in mm).
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We use a 90%/10% train-test ratio to construct a model for the growth parameter as well as
for the Di↵usion parameter D. We obtained the following linear models:

⇢ = 5.142 · 10�3R0 � 1.671 · 10�2R1 + 1.209 · 10�2R2 + 1.409 · 10�1

D = 1.473 · 10�2R0 � 1.672 · 10�1R1 + 1.534 · 10�1R2 � 5.784 · 10�1

Therefore, using the previous computed radii, we obtained the following parameters specific for
Patient A.

⇢ = 0.1966

D = 0.4229

It is important to note that this investigation is a proof of concept and we need to either improve
the model or find a way to increase the data size.

4 Forward simulation

Now that we have obtained the parameters, we can feed it to the forward simulator and observe
tumor growth over our given T = 60 days. To construct the forward simulator, we discretize
Equation (1) using the Finite Volume method.

4.1 Finite Volume Method

Reconsider Equation (1):

@C

@t
= r · (DrC)| {z }

di↵usion

+ ⇢C(1 � C)| {z }
growth

We discretize the di↵usion term implicitly, and we linearize the reaction term:

Cn+1 � Cn

�t
= D(r ·rCn+1) + ⇢Cn+1 � ⇢(Cn)2.

Then,

(1 � �t⇢)Cn+1 � �tD(r ·rCn+1) = Cn � �t⇢(Cn)2.

We sub-divide the spatial domain into finite cells. Then, for a particular cell, i, we take the integral
over that cell ⌦i, and get:

Z

⌦i

(1 � �t⇢)Cn+1 �
Z

⌦i

�tD(r ·rCn+1) =

Z

⌦i

Cn � �t⇢(Cn)2

And, applying the divergence theorem to the second term yields:
Z

⌦i

↵Cn+1 �
Z

@⌦i

�rCn+1 · n =

Z

⌦i

F (Cn)

where1 ↵ = 1 � �t⇢, � = �t ·D and F (Cn) = Cn � �t⇢(Cn)2.
A zero flux boundary condition (i.e. ru · n = 0) is applied in this model.

We can simplify the explanation of the Finite Volume method in 2 dimension (Figure 7): we
compute the average tumor density over the consider cell ⌦i, then we compute the flux through all
boundaries of the cell, and finally multiply the right hand side using values obtained at the previous
time-step with the cell volume.

1We choose our �t to satisfy the condition that ↵ > 0 for the method to be stable.
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Figure 7: Finite Volume Method in 2D.

4.2 Results

Using the computed parameters (D, ⇢) for the patient we considered, we simulated tumor growth
over T = 60 days. Hence, we build a numerical method to solve the equation above with ⇢ = 0.20,
D = 0.43, �t = T/N, (n = 300), and the following initial conditions:

u0 = 0.5 (necrotic core)

u0 = 0.3 (enhancing rim)

u0 = 0.1 (edema)

We obtain the following results (see Figure 8). We can see the tumors growing and proliferating in
the brain as time passes. We slice the brain geometry across the three coordinate planes (xy-plane,
yz-plane, and xz-plane accordingly) and we show snapshots of the tumor evolution at T = 0, 20, 40,
and 60 days. At the final time T = 60 days, we measure the spherical equivalent necrotic tumour
volume and find a radius of R0 =. If we consider that death occurs when the spherical equivalent
tumour volume is typically of radius is 30 mm [9]. Hence, this simulation seems to agree with the
expected survival time of a untreated GBM.

5 Conclusion

We developed a computational pipeline to simulate a GBM evolution that is specific to a given
patient. From their single pre-operative MR scan, we aimed to estimate the model parameters to
simulate the tumor growth in hopes to predict a prognostic.
It would have been interesting if there were data available at multiple time points for an untreated
patient so that we can compare the simulated growth and the actual growth. One way to conduct
such comparison might be to consider experiments done on mice as various data are available in
this framework. Also, the linear regression constructed in Section 3 is a proof of concept to learn
the model parameters from a single MRI snapshot. As discussed, the data considered for this
model is very small. Since accessibility to data in this framework is limited, we opted to create a
hypothetical dataset using our numerical solver.
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Figure 8: Forward Simulation for T = 0, 20, 40, 60 days.

6 Futher exploration: Inference of patient specific parameters us-
ing virtual brains

Let us consider the same domain, initial condition, and �t = T/N = (60/300).
We define

DD = {D = 0.05 + i⇥ 1.3 � 0.05

nd
for i = 0, 1, ..., 20}

RR = {⇢ = 0.1 + i⇥ 0.6 � 0.1

nr
for i = 0, 1, ..., 10}

For each parameter pair (D, ⇢) 2 DD⇥RR, we run the forward simulation and compute the radius
of the GBM subregions at each iteration. This gives us a collection of single-snapshot data with
associated model parameters.

We, thereby, aim to construct a new linear regression using these hypothetical data. Since we
have (nd+1)⇥(nr +1) possible pairs, if we choose nd = 20 and nr = 10, we obtain 69300 snapshots
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in total.
Thus, we construct a new linear regression model using these hypothetical data. We use a 80%/20%
train-test ratio for the new (updated) linear regression model for both D and ⇢.
Hence, given the radii computed for the brain we considered in Section 3 , we obtain a new estimate
for the model parameters:

⇢ = 0.2661

D = 0.3530

There is still a lot to be investigated and improved in our model. However, we have succeeded in
building a bridge between our simulation environment (C++) and our parameter learning environ-
ment (python). This will facilitate the exploration of various models of step 5 (Figure 1) in our
future work.
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