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Superresolution images reconstructed from single-molecule localiza-
tions can reveal cellular structures close to the macromolecular scale
and are now being used routinely in many biomedical research
applications. However, because of their coordinate-based represen-
tation, a widely applicable and unified analysis platform that can
extract a quantitative description and biophysical parameters
from these images is yet to be established. Here, we propose a
conceptual framework for correlation analysis of coordinate-
based superresolution images using distance histograms. We
demonstrate the application of this concept in multiple scenarios,
including image alignment, tracking of diffusing molecules, as well as
for quantification of colocalization, showing its superior performance
over existing approaches.

single-molecule imaging | superresolution microscopy | image analysis |
diffusion

In recent years, localization-based superresolution microscopy
has been demonstrated to be a powerful technique to image be-

yond the diffraction limit and has produced numerous beautiful
images of subcellular structures. The scientific community has now
started to embrace it as a routine tool to answer actual biomedical
questions: for example, the in situ dissection of molecular organi-
zations for large-protein complexes, including neuronal synapses
(1), focal adhesion complex (2), clathrin-coated pits (3), centrosome
(4, 5), nuclear pore complex (6, 7), and the escort complex at viral
budding sites (8); high-density molecule diffusion and transport
study (9); and the colocalization and interaction of two different
structures or biomolecules (10).
To make accurate conclusions about the biological system of in-

terest, it is often required to quantitatively characterize the acquired
images. While numerous analysis strategies have been established for
conventional fluorescence microscopy, these strategies do not apply
directly to localization-based superresolution images. The reason is
that a conventional fluorescence image consists of pixels or voxels,
whereas a localization-based superresolution image consists of a
collection of 2D or 3D coordinates, each associated with a locali-
zation uncertainty. Under this coordinate-based representation,
many trivial operations on conventional images, such as thresh-
olding and subtraction, become challenging. A simple solution
for this challenge is to adapt localization-based superresolution
images to established, pixel-based analysis routines by binning
the coordinates on a pixel grid; however, this binning inevitably
leads to a loss of precise localization information. On the other
hand, certain operations complicated for pixelated images, such
as subpixel image translation, rotation, and image deformation,
become straightforward for coordinates. Therefore, it would
be greatly beneficial to establish a generalized coordinate-based
analysis framework.
We focus on image correlation, which is one of the most widely used

image-processing methods. For localization-based superresolution
microscopy, correlation analysis or related methods (such as
Ripley’s functions) have been used in measuring resolution (11),
testing colocalization and clustering (10, 12, 13), image-based
drift correction (14, 15), and aligning superresolution images of

individual structures (7, 16), although most of these cases still used
spatial binning of the super-resolved coordinates.
Here, we present a coordinate-based correlation analysis

framework for localization-based superresolution microscopy.
We mathematically showed that point-point distance distri-
bution is equivalent to pixel-based correlation function. This
point-point correlation function can easily model the effect of
localization uncertainty. Moreover, this concept can be ex-
tended to the time domain and other distance definitions. We
then demonstrated our framework in three applications of
superresolution microscopy for which existing methods are either
nonexistent or underperforming: model-free image alignment and
averaging for structural analysis, spatiotemporal correlation anal-
ysis for the mapping of molecule diffusion, and the quantification
of spatial relationships between complex structures utilizing the
generalized point-set distance definition.

Results
Correlation Function Between Two Coordinate-Based Images. In the
pixel-based image representation, the translational cross-correlation
function of two images A and B, CAB (ξ, η), is usually defined as the
mean of pixel value products when shifting the two images by (ξ, η),
normalized by the product of mean pixel values:
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CABðξ, ηÞ = hIAðx, yÞIBðx+ ξ, y+ ηÞi
hIAðx, yÞihIBðx, yÞi [1]

where IA and IB are brightness values at pixel ðx, yÞ. For
localization-based superresolution microscopy, A and B are col-
lections of NA and NB localization points, and thus they can be
described as the sum of Dirac delta functions with each function
representing one single-molecule localization point (17, 18). By
replacing IA and IB of Eq. 1 with this coordinate-based definition,
we can derive that the cross-correlation function between two
coordinate sets is as follows (SI Appendix, Note S1):

CABðξ, ηÞ= XY
NANB

XNA

i=1

XNB

j=1

δ
�
ξ− xij, η− yij

�
[2]

where X and Y are the image dimensions and ðxij, yijÞ is a vector
from localization point i in A to j in B. Because the product of Dirac
delta functions is nonzero only when their coordinates overlap, the
correlation function of two coordinate sets is yet another set of
coordinates, located at the point-to-point vectors from coordinates
in A to coordinates in B (Fig. 1). In other words, the correlation
function is a displacement map showing how B has to be translated
so that one point in A overlaps with one point in B. Therefore, we
name CABðξ, ηÞ the “point-point correlation function.”
To describe the effect that each localization point is associated

with uncertainties in its coordinates, we replace the Dirac delta
functions with normal distributions. The 2D point-point correla-
tion can then be written as follows:

CGauss
AB ðξ, ηÞ= 1

2π
XY

NANB

XNA

i=1

XNB

j=1

wij

σ2ij
exp

0
B@−

�
ξ− xij

�2 +
�
η− yij

�2

2σ2ij

1
CA,

[3]

where σ2ij = σ2i + σ2j is the variance of the correlation vector connect-
ing localization i with localization j, with precision variances σ2i and
σ2j , respectively (SI Appendix, Note S2). The weight factor, wij, is used
to weigh the correlation vectors, which is typically set to the inverse of
local localization density around localization i (SI Appendix, Note S3).
When ignoring the directional information, a radially averaged

2D correlation function (SI Appendix, Notes S4 and S5) forms a
“pair-distance distribution”

GABðr,ΔrÞ= XY
πΔrð2r+ΔrÞNANB

HABðr,ΔrÞ. [4]

Here, r is the radial coordinate and Δr is the radial bin size, and
HABðr,ΔrÞ is the number of pair-wise distances between A and B

that fall into the (r, r + Δr) range. Equivalent versions of GABðrÞ
were previously used to quantify clustering and colocalization in
localization-based superresolution microscopy under the term
“pair correlation” (13) and “steady-state correlation” (10).

Using Correlation for the Alignment of Superresolution Images. A
straightforward application of image correlation is in aligning and
averaging multiple superresolution images of a subcellular struc-
ture to gain signal-to-noise ratio, which, in turn, leads to enhanced
effective image resolution (11). This very successful biological ap-
plication for superresolution microscopy has allowed in situ dis-
section of molecular organizations for large-protein complexes. In
most cases, however, image aligning and averaging relied on manual
image stacking by hand, imposing a predefined structural model
(19), or pixel-binning the coordinate sets (20). Algorithms for
model-free averaging of coordinate-based images only have been
discussed recently (19).
We incorporate our coordinate-based definition of correlation

into an extensively used single-particle cryoEM reconstruction
strategy (21). In this method, the sum of all coordinates acted as
the initial reference and translational and rotational transfor-
mations were applied to individual particles to maximize their
correlation with the reference; then, the reference was updated
with the sum of transformed coordinates. This procedure was
iterated multiple times to result in a satisfactory alignment (Fig.
2A) (Materials and Methods). Compared with pixel-based
implementations, the major advantage of using the coordinate-based
image representations is that image transformation is straightforward
and can be performed exactly without interpolation or loss of in-
formation. Moreover, to deal with the excessive noise in localization-
based superresolution images, we added a density normalization
to correlation calculation, which avoids misalignment caused by
clusters with a high density of localization points (SI Appendix, Note
S3). We validated this method by aligning simulated superresolution
images of a nearly symmetric structure (SI Appendix, Fig. S1). With
density normalization, the asymmetry of the structure was correctly
resolved in the averaged image, even when the individual input
images are highly noisy. This simulation also demonstrates the
advantages of model-free alignment, which is not prone to artifacts
from incorrect initial models (e.g., by mistakenly assuming a sym-
metric structure in this case).
As a demonstration, we applied this algorithm to DNA-

PAINT images of a DNA origami structure (22) (Fig. 2B). We
purposely used a very short imaging period (500 frames) so that
each image is highly noisy because of the very limited number of
localization points (Fig. 2C and SI Appendix, Fig. S2). The mean
localization precision of this dataset is estimated to be 3.7 nm. By
rotationally and translationally aligning and summing 133 images
(no initial model was assumed), the underlying structure was
precisely recovered (Fig. 2D). We further calculated the pair-
distance distribution between the combined image and the

0.0

1.0

2.0

3.0

0 1.0

Coordinate Images Pair-Distance DistributionCoordinate Correlation Function

Translation/
Overlay

Radial Average/

Normalization

1.0

1.0

A B C

Fig. 1. The coordinate-based correlation function and its relationship to the pair-distance distribution. The correlation function of coordinate-based images
(red and blue) (A) is yet another set of coordinates (B). Each coordinate in correlation function (green) is located at the tip of a vector that connects one red
localization with one blue localization. Two example vectors are shown in orange. (C) The normalized radial average of the correlation function shown in B is
the pair-distance distribution, which can be either presented by binning (green) or as a kernel density (red) (SI Appendix, Note S3).
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ground truth from the origami design to quantify the alignment
precision (Fig. 2E). The resulting correlation function has a peak
width of 4.9 nm, which is comparable to the mean localization
precision, indicating that our coordinate-based, model-free im-
age alignment method has very high alignment precision. Our
algorithm clearly outperforms pixel-based alignment using the
single-particle EM image-processing software RELION (23) (SI
Appendix, Fig. S3). We have also demonstrated its robustness
against added background noise points (SI Appendix, Fig. S4).

Frame-Pair Correlation for the Mapping of Molecule Diffusion. Next,
we show that by incorporating temporal information, pair-distance
distribution analysis can be used to analyze the movement dynamics
of biomolecules in living cells. By combining with photo-switching
and single-molecule tracking, localization-based superresolution
microscopy has allowed a high density of target molecules to be
labeled and followed over time (albeit with short trajectories) (24),
thus offering the opportunity to map the spatial heterogeneity of
molecule diffusion and transport (9).
Tracking a moving molecule considers the displacement of fluo-

rescent molecules from one camera frame to the next one to pro-
duce diffusion trajectories. Coincidently, a collection of all pair-wise
displacements is exactly the cross-correlation function of molecule
localizations in these two camera frames. Therefore, we define the
frame-pair distance distribution FPD(ξ, η) as the average displace-
ment map of molecules localized in two consecutive frames (shown
in the radially averaged form):

FPDðr,ΔrÞ = XY

Aðr,ΔrÞPF−1
k=1NkNk+1

1
F − 1

XF−1
k=1

Hk,k+1ðr,ΔrÞ [5]

Here, F is the total number of frames, k is the frame number
indicating a single data acquisition time point, and Hk, k + 1(r, Δr)
is a histogram of distances between localizations in frame k with
frame k + 1. This FPD is analogous to image correlation

spectroscopy (25), particle image correlation spectroscopy (17),
and the localization-specific spatiotemporal image correlation
spectroscopy (26).
FPD describes the ensemble molecule diffusion activity within

the area of analysis. For 2D Brownian diffusion, the resulting
FPD distribution is a Gaussian peak centered at zero, with an SD
representing the mean displacement (MD) per frame. MD is
determined by the diffusion coefficient, D, the delay between two
exposures, Δt, and the localization precision, p:

MD2 = 4DΔt+ 2 p2 [6]

FPD is particularly useful for the spatial mapping of diffusion
behavior, because such measurement requires a high density of
tracked molecules. At this density, single-molecule tracking becomes
difficult because collision of molecules, together with their constant
activation, blinking, and bleaching, leads to incorrectly linked
trajectories (27). Moreover, the short length of the trajectories
makes the use of more sophisticated tracking algorithms imprac-
tical (in our DiD experiments below, the vast majority of the
fluorophores lasted for no more than two frames). On the other
hand, FPD is unaffected because these effects only contribute to a
flat baseline that can be easily handled.
To demonstrate FPD-based diffusion analysis, we took STORM

images of Drosophila S2 cell membranes stained with a photo-
switchable membrane dye, DiD-C18 (9) (Fig. 3). Because DiD is a
small molecule that has a high diffusion speed in the membrane,
we used a stroboscopic illumination scheme to reduce the motion
blur from fluorophore diffusion within the exposure time (28).
While the camera exposure time was 8.3 ms (∼121-Hz frames per
second), we turned on the excitation laser only for 1/10th of the
frame duration (0.83 ms). Moreover, by varying the time point of
strobing within a frame, we were able to access subframe temporal
resolution. Specifically, we turned on the laser at 8/10th of the
frame duration for even frames and at the beginning of a frame for
odd frames (Fig. 3A). As a result, the effective time lag from even

D

A Translate images to
overlap center of mass

New reference:
Sum of all images

For each image:
   Calculate roto-cross-
   correlation with reference

ξ η

θ

For each image:
   Rotate and translate
   image by (-ξ0, -η0, -θ0)

For each image:
   Find the correlation
   maximum at (ξ0, η0, θ0)

B

E

C

Fig. 2. Structure refinement by translational and rotational image alignment. (A) Scheme of the alignment algorithm. (B) The DNA origami design. (C)
Example images of individual structures reconstructed from DNA-PAINT localizations. (D) Sum of 133 individual DNA-PAINT images as in C after roto-
translational alignment, revealing the underlying organization of DNA-binding sites as the digit “5”. (E) Pair-distance correlation between the ground truth
and the aligned image; the insert shows the overlay of ground truth and the aligned image. (Scale bars: 50 nm.)
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to odd frames was only 0.2 frames (1.7 ms) and 1.8 frames (15 ms)
from odd to even frames. We then computed the frame-pair dis-
tance distribution for these two different sets of frame pairs as
both 2D histograms and radially averaged 1D curves (Fig. 3 D–F).
Both curves can be fitted with a Gaussian function, hinting normal
Brownian diffusion for DiD in the plasma membrane. In this case,
the mean squared displacement (MSD) of DiD between frames
can be calculated from the square of the SD of the fitted peak
(which we define as MD). Benefiting from the high localization
density, we were able to produce a spatial map of MD by binning
the STORM image and fitting the frame-pair distance distribution
of each spatial bin. The MD maps appear rather homogenous
across the cell plasma membrane (Fig. 3 G and H). We note that
non-Brownian diffusion results in a non-Gaussian FPD histogram,
but the MSD value can still be easily calculated from the baseline-
subtracted histogram based on its definition.
With additional sets of measurements at lag times of 5.8 and 10.8 ms,

we were able to construct an MSD curve in the time range of 1.7–14.9
ms (Fig. 3I), enabling different diffusion modes to be distinguished.
Linear fitting indicates that DiD undergoes largely simple Brownian
diffusion at this time scale. The nonzero intercept at zero time lag
should be attributed to single-molecule localization uncertainty, while
the slope of the fitting corresponded to a diffusion coefficient of 0.2
μm2/s, similar to the previous measurement of DiI/DiD diffusion in
cell plasma membrane (29). Our result of simple Brownian diffusion
is consistent with previous stimulated emission depletion (STED)-
FCS studies of simple lipids (30). In fact, our variable-time strobe
method probes into a comparable temporal (1.7 ms) and subdiffraction
spatial scale as STED-FCS (31), and it has the similar capability to
resolve heterogeneous diffusion behavior by fitting the frame-pair cor-
relation curve with a multispecies diffusion model. Therefore, it offers a
complementary method to investigate lipid diffusion and membrane
heterogeneity at high spatiotemporal resolution, with STED-FCS po-
tentially offering a higher temporal resolution and variable-time
strobe proving to be an easier way for spatial mapping.

Point-to-Set Correlation Function for Structural and Colocalization
Analysis. Finally, exploiting the equivalence between the dis-
tance histogram and the correlation function of coordinate-based

superresolution images, an alternative definition of distances can
be incorporated in our framework for quantifying the spatial re-
lationship between more complicated structures. Specifically, by
considering the distance between individual point A and all points
in B as a set, B, we used the histogram of these point-set distances
to define a point-set correlation function. Mathematically, the
distance between a point and a set of points is defined as the
distance between this point and its nearest neighbor in the set. We
calculate the histogram of this distance for all A points,
HABðr,ΔrÞ, and then normalize it by the image area occupied by
each bin of the histogram, ABðr,ΔrÞ, and the average localization
density in the whole field of view (Fig. 4A):

GABðr,ΔrÞ= XY
ABðr,ΔrÞNA

HABðr,ΔrÞ [7]

This correlation function converts the point sets in the original
image into a numerical function, which allows us to correct the
contributions from channel cross-talk arithmetically (SI Appen-
dix, Note S6).
To illustrate the utility of the point-set correlation concept, we

analyzed the spatial relationship between the cis-Golgi protein
GRASP65 and either the cis-Golgi protein GM130 (Fig. 4B) or
the trans-Golgi protein TGN46 (Fig. 4C) (32). We used the
DBSCAN method (33, 34) to automatically identify Golgi rib-
bons in either the GM130 or TGN46 channel and isolate the
structures from background noise, calculated the point-set and
point-point correlation functions between GRASP65 and Golgi
ribbons, and then subtracted the cross-talk contribution from the
correlation functions (Fig. 4D). For GRASP65 and GM130,
which were shown biochemically to interact with each other (35),
the point-set correlation displayed a sharp peak at zero distance,
indicating strong colocalization. On the other hand, while the point-
point correlation peak was broader (reflecting the width of the Golgi
ribbons), it does provide short-distance information by showing a
dip at zero distance. This dip may be due to spatial exclusion of
antibodies, differential accessibility of the two epitopes, or im-
precise cross-talk subtraction. For GRASP65 and TGN46, which
should exist in parallel, nonoverlapping structures, the point-set
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correlation displayed a peak at ∼200–300 nm, reflecting the dis-
tance between cis- and trans-Golgi ribbons. In contrast, the point-
point correlation was completely smeared by the length of the
Golgi ribbons, making it much less informative than the point-set
correlation in characterizing the spatial relationship between these
two parts of Golgi.

Conclusion
In summary, we have demonstrated the utility of our coordinate-
based correlation analysis framework in quantitative interpretation
of localization-based superresolution microscopy data in a number
of cases: image alignment, tracking of molecular diffusion, and
quantification of colocalization. We have also shown the generality
and flexibility of this framework in expanding into the time domain
(frame-pair correlation) and adoption of alternative definitions
of distance (point-set correlation). Although we described our
framework and algorithms in 2D representation, they can be
easily extended to 3D superresolution microscopy. The resulting
correlation function will be a set of points at the tip of 3D distance
vectors between two localizations. Even though in most cases the
localization precision in the axial direction is different from that in
the lateral direction, this anisotropy can be handled by trans-
forming the uncertainty cloud together with image transformation.
We expect that the analysis methods described here, as well as
model-free superresolution image alignment and fast diffusion
analysis by strobe illumination with variable timing, will be broadly
useful in practical applications of superresolution microscopy in
various biological systems. Finally, we envision that, in many cases,
the most efficient algorithm will be a hybrid of coordinate- and
pixel-based approaches (SI Appendix, Note S7).

Materials and Methods
Roto-Translational Image Alignment. The experimental conditions for this
dataset were described previously (22). A set of 133 images of the origami
structure was picked by hand (SI Appendix, Fig. S1). The alignment pro-
cedure was performed as follows. First, coordinates of individual images
were shifted so that their center of mass overlaps. Then, several iterations of
the following procedure were applied:

i) For each individual image, find the translation and rotation that
maximizes the cross-correlation of this image with the sum of all other im-
ages. For that matter, a brute force-maximizing algorithm was used that

samples the cross-correlation function at discrete steps of the rotation angle
and the two translational dimensions. For a given rotation, the translational
cross-correlation was evaluated as the sum of Gaussians, centered at the tip
of pairwise distance vectors with a width of the combined localization un-
certainty (theoretically estimated as in ref. 36). Note using a typical opti-
mization problem solver (even the Jacobian can be supplied as the gradient
of the sum of Gaussians).

ii) Apply the correlation-maximizing rotation and translation to each
image, so that a new and improved image is formed when taking the sum of
all images. For the alignment shown in this article, 10 iterations of this
procedure were applied with a 5-nm translational grid (±25 nm around the
center of mass in each dimension) and a 5° rotational step size (covering the
complete 360°). The resulting aligned images were further optimized by
three iterations with a 2-nm translational grid (±10 nm around the center of
mass) and a 2° rotational step size (again covering 360°). To avoid the issue
that image alignment for localization microscopy is strongly dominated by
local clusters comprising a relatively high number of localization points,
during correlation calculation we weighted the displacement vector against
the local density of the origin point (SI Appendix, Note S3).

Single-Molecule Localization Microscopy of DiD in S2 Cells. WT S2 cells were
cultured in Sf-900 II serum-freemedium (Gibco) and plated onto 35-mm glass-
bottom dishes (no. 1.5 cover glass; MatTek) for fluorescence imaging. To
facilitate a spread-out cell morphology, the cover glass was coated with
0.1 mg/mL Con A for 0.5 h before cell plating. The cells were then washed (3×,
PBS), fixed [4% paraformaldehyde (PFA), 10 min], incubated in DiD (1 μM,
30 s), and washed again (3×, PBS). For images, cells were mounted in PBS
with the addition of 100 mM mercaptoethylamine (pH 8.5) and 5% glucose
and 1% oxygen scavenging solution [0.5 mg/mL glucose oxidase (Sigma-
Aldrich) and 40 mg/mL catalase (Roche Applied Science)]. Single-molecule
localization data were acquired on a microscope, as described previously (37),
with a 121-Hz camera frame rate, a view field of 128 × 128 pixels, and an EM
gain of 100. For DiD excitation, the 642-nm laser power was ∼74 mW
measured at the back port of the microscope. The laser was shuttered in
synchronization with the camera frames as shown in Fig. 3A.

STORM and Image Analysis of Golgi Proteins. RPE cells were seeded overnight
in a Lab-Tek II eight-well–chambered no. 1.5 cover glass (Nunc), washed
twice with warm PBS, and fixed with warm 4% PFA for 15 min at 37 °C.
Then, cells were washed again (3×, PBS) and blocked with 3% BSA and 0.5%
Triton-X 100 in PBS for 15 min. Primary antibody (Rabbit Anti-GRASP65,
ab30315; Abcam; Sheep Anti-TGN46, AHP500GT; AbD Serotec; Goat Anti-
GM130, sc-16268; Santa Cruz; 1–5 μg/mL) staining was performed overnight
in 3% BSA at 4 °C, followed by washing (3×, PBS) and secondary antibody
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Fig. 4. Colocalization and distance characterization using the point-set correlation function. (A) Schematic of the point-set correlation function. Red and
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(points) with a distance between r and r +Δr to any red localization (set), normalized by the area from which the corresponding distance vectors could
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staining (1–5 μg/mL) in 3% BSA for 1 h. Cells were washed gain (3×, PBS) and
postfixed with 3% PFA + 0.1% gluteraldehyde in PBS before final washing
(3×, PBS). Secondary antibodies were labeled with a mixture of two fluo-
rophores (either Alexa Fluor 405 and Alexa Fluor 647, or Cy3 and Alexa Fluor
647) for activator-reporter type two-color STORM imaging (14). STORM ac-
quisition was performed on a microscope, as described previously (37). For
display, nonspecific blinking was removed from the STORM images (1). The
point-set distance distribution was calculated as follows. First, the localiza-
tion points belonging to Golgi ribbon structures were identified and isolated
from background noise points. For this purpose, DBSCAN, a well-known
density-based clustering method (33) that has been previously applied to
segmentation of localization-based superresolution images, was used.
DBSCAN requires two parameters: neighborhood radius and the number of
minimum points within this radius to qualify as in a cluster. It starts with an
arbitrary starting point that has not been visited. If the neighborhood of this
point contains a sufficient number of points, a cluster is then started and
then propagated until reaching the boundary points whose neighborhood
falls below the point number threshold. Considering the size and shape of
Golgi ribbons, we set the neighborhood radius to be 300 nm. The threshold
for minimum points was set to be 30 and 110 for GM130 and TGN46 ref-
erence images, respectively, so that the segmentation results best matched
visual examination of the images. Although, in practice, the two parameters
for cluster identification do need to be optimized for the shape of the
structure, labeling density, and acquisition conditions, we have found that
small variations in these parameters do not substantially change the seg-
mentation results. The clustered molecules are defined as the “set” for the
following computation, whereas points not included in any clusters were
labeled as background noise localizations and were excluded in further
analysis. For the point-set distance distribution, the GRASP65 density was
calculated as a function of distance r to the reference set (GM130 or TGN46).
To facilitate the computation of the area of each distance shell around the

reference set, the calculation was performed based on pixelated STORM
images (20-nm pixel size) where the pixel value is equal to the number of
localizations in that pixel. The GRASP65 pixel image was subtracted by a
pixel image from nonspecific blinking events (which was divided by the ratio
of specific to nonspecific frames beforehand) (1, 14), allowing negative
values to preserve statistical effects. The image of the reference set was
convolved with a centered logical disk of radius r (each pixel is either unity if
its distance to the image center is < r and zero otherwise). The resulting
convolution is a logical map of pixels that are closer than r to the reference
set. Based on logical maps for a range of distances r, the cumulative point-
set distance histogram was calculated by summing up all pixels in the
GRASP65 image where the logical map is equal to or larger than unity.
Besides the localization histogram, the corresponding cumulative area was
calculated by summing up all nonzero pixels in the logical map. The point-
set distance distribution was then calculated by taking the discrete differ-
ence of the cumulative localization histogram and dividing the result by the
discrete difference of the cumulative area.

Code Availability. Executable programs for particle alignment and diffusion
analysis, the Python code for colocalization analysis, and all of the experi-
mental dataset used in this article are available at huanglab.ucsf.edu/Data/
Correlation.zip.
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